
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A262 154 DTIC
S T1 APRI 19

C

THESIS

ULTRA-WIDEBAND RADAR TRANSIENT DETECTION
USING TIME-FREQUENCY

AND
WAVELET TRANSFORMS

by

William A. Brooks, Jr.

December 1992

Thesis Advisor: Monique P. Fargues

Approved for public release; distribution is unlimited.

93-0670010" 3 31 13 9 Il~~#!l~!!,/gl~•



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release:

2b. DECLASSIFICATION/UOWNGRAUING SCREIULE distribution is unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

u"NAMIOFS'FFORMINý ORGANZAN 6b. OFFICE SYMBOL 7a- NAME OF MONITORING ORGANIZATION
ericmc an t~omputer •ngmeenng &ept. (if applicabe) Naval Postgraduate School

Naval Postgraduate School EC/FA

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Cooe)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF F'NDINGiSPONSORING 8b. OFFICE SYMBOL 9' PROCUREMENT INSTRUMENT iDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO ACCESSION NO

11. TITLE (Include Secunty Classficafton)
ULTRA- WIDEBAND RADAR TRANSIENT DETECTION USING T"IME-FREQUENCY AND WAVELET TRkNSFOR.MS (U)

N€.gSNt.LALUTH9 H(,-
iktfam A.rooks. jr.

13•. TYPf _.REP.QOT |13b. TIME COVERED •14. DATE OF REPORT (Year, Month, Day) 15 PAGE COUNTaster s t-ss FROM TO December 1992
16. SUPPLEMENTARY NU IATI IU1e views expressed in this thesis are those o te author and do not reflect Me official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Cotnue on reverse if necessary arid ,imn* by bloc, 'lumberl

FIELD GROUP SUS-GROUP"

19. ABSTRACT (Continue on remse if naeensay and identify by block number)
Detection of weak ultra-wideband (UWB) radar signals embedded in non-stationary interference presents a diffi-

cult challenge. Classical radar signal processing techniques such as the Fourier transform have been employed with
some success. However, time-frequency distributions or wavelet transforms in non-stationary noise appears to
present a more promising approach to the detection of transient phenomena. In this thesis, analysis of synthetic sig-
nals and UWB radar data is performed using time-frequency techniques, such as the short time Fourier transform
(STFT), the Instantaneous Power Spectrum and the Wigner-Ville distribution, and time-scale methods, such as the a
trous discrete wavelet transform (DWT) algorithm and Mallat's DWT algorithm. The performance of these methods
is compared and the characteristics, advantages and drawbacks of each technique are discussed.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[3UNCLASSIFIED/UNLIMITED Q SAME AS RPT. Q OTIC USERS UNCLASSIFIED

~~~ ýEI~ riudaAms Code) j 2cEQf P YMO
mu e i' .e a r g u e s 2 O • F• O I, , a o = d S Y M B O L

mn 01",M 1473, 8 MAR 83 APR edbion may be used untdl exhausted SECURITY CLASSIFICATION OF THIS PAGE

AJl other odfns are obsolt UNCLASSIFTED



Approved for public release; distribution is unlimited.

Ultra-Wideband Radar Transient Signal Detection Using Time-Frequency and Wavelet Transforms

by

William Allen Brcoks, Jr.

Lieutenant. United States Navy

BSCHE, University of Missouri at Rolla, 1980
MNICHF. University of Missouri at Rolla, 1983

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

December 1992

Author:. ____________________A/(-_________A_

William A. Brooks, J

Approved by:
Apprved y: nique P. Fargues,,Thesis Advisor

G. S. Gill, Co-Advisor

Michael A. Morgan, Uh'airman
Department of Electrical and Computer Engineering

ii



Abstract

Detection of weak ultra-wideband (UWB) radar signals embedded in non-stationary

interference presents a difficult challenge. Classical radar signal processing techniques

such as the Fourier transform have been employed with some success. However, time-

frequency distributions or wavelet transforms in non-stationary noise appears to present a

more promising approach to the detection of transient phenomena. In this thesis, analysis

of synthetic signals and UWB racar data is performed using time-frequency techniques,

such as the short time Fourier transform (STFT), the Instantaneous Power Spectrum and

the Wigner-Ville distribution [1], and time-scale methods, such as the a trous discrete

wavelet transform (DWT) algorithm [21 and Mallat's DWT algorithm [3]. The

performance of these methods is compared and the characteristics, advantages and

drawbacks of each technique are discussed.
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I. INTRODUCTION

A. PROBLEM STATEMENT

The Research Development Test and Evaluation Division of the Naval Command

Control and Ocean Surveillance Center (NCCOSC RDT&E Division) in San Diego,

California has designed and built an ultra-wideband (UWB) radar system to investigate

the utility of this technology. The initial research concentrated on the detection of small

boats located on a radar sea range. The target returns from small boats consist of short

duration transients embedded in sea clutter, multipath and non-stationary background

noise. The goal of this thesis is to process the UWB radar returns using time-frequency

distribution and wavelet transform spectral analysis techniques for the purpose of target

detection.

Classical time-frequency spectral analysis methods can be used for non-stationary

signal analysis and are derived from the Fourier transform. To determine the time

dependence of the frequency content of a signal, these techniques segment the data

through the use of a finite analysis window g(t) over which a signal is approximately

stationary. The Fourier transform of the windowed data is used to compute the spectrum

of the signal as a function of time and, sliding the window along the entire data record

results in a time-frequency surface. The use of windows introduces an inherent tradeoff

between time and frequency resolution. This tradeoff is a function of the window length.

Long windows increase the frequency resolution at the expense of the time resolution

and, vice-versa. Thus, these techniques can prove inadequate for analyzing highly non-

stationary behavior such as transients. The time-frequency methods discussed in this

thesis are the Short Time Fourier Transform (STFT), the Wigner-Ville Distribution

(WD) and the Instantaneous Power Spectrum (IPS).

Wavelet transforms can serve as an alternative to conventional time-frequency

techniques and may be used in problems where joint resolution in time and frequency are
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required. Wavelet transforms are similar to windowed Fourier transform but use a

stretched or compressed version of the analysis window g(t/a), where a is referred to as

the scale factor and is always greater than one. This approach leads to a representation

called a time-scale distribution, where the scale varies inversely with frequency. As the

scale factor a increases, the analysis windowg(t/a) becomes dilated, and the frequency

resolution increases. When the scaling factor a decreases, the analysis window is

contracted and therefore, the time resolution i•creases. The scaling properties of wavelet

transforms are advantageous in signal processing applications because the transform

provides good frequency resolution for signals that are slowly varying in time and

provides good time resolution for high frequency signals that are generally highly

localized in time.

Time-frequency methods perform their analysis with a constant absolute bandwidth

(because the same window is used at all frequencies), while wavelets perform their

analysis with a fixed relative bandwidth. This is a primary advantage of time-scale

distributions, because these methods allow sharp time resolution at high frequencies (low

scales) and sharp frequency resolution at low frequencies (high scales). Thus, this

method shows promise for estimating the spectra of UWB radar targets that primarily

consist of transient phenomena.

B. OBJECTIVE

The goal of this thesis is to examine time-frequency and time-scale techniques that

may be used to detect transient signals originating from small UWB radar targets

embedded in non-stationary background noise. Chapter 11 discusses UWB radar system

and the radar signal processing techniques used by the personnel at NCCOSC RDT&E

Division. Chapter III examines time-frequency methods such as the Short Time Fourier

Transform, the Wigner-Ville distribution and the Instantaneous Power Spectrum.

Chapter IV introduces the "Discrete" Continuous Wavelet Transform (DCWT). the a
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trous Discrete Wavelet Transform (DWT) algorithm and Mallat's DWT algorithm. The

performance of each method on five synthetic test signals and two UWB radar data

records is compared in Chapter V. Recommendations and conclusions are presented in

Chapter VI. Finally, the MATLAB computer code for each of the time-frequency and

time scale methods i, presented in the Appendix.
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II. THE ULTRA-WIDEBAND (UWB) RADAR
PROGRAM AT NCCOSC RDT&E

A. GENERAL DESCRIPTION OF UWB RADAR

An UWB radar has a bandwidth considerably greater than that associated with

conventional radar systems. Impulse UWB technology refers to the free space

transmission of a short-duration video pulse with a very high peak power and a frequency

spectrum that extends from near direct current to several Gigahertz. Hence, UWB radars

are also known as "impulse", "non-sinusoidal" or "large fractional bandwidth radars".

Compared to conventional radars, UWB radar is characterized by very large

bandwidths and high range resolutions [4]. Non-wideband radars typically operate with

a center frequency in the microwave region, have bandwidths on the order of a few

Megahertz and pulse widths on the order of a microsecond. Impulse radars may have a

center frequency in the UHF region, have a bandwidth of a few hundred Megahertz and

have pulse widths on the order of nanoseconds.

The combination of high range resolution, large bandwidth and the low frequencies in

UWB radar systems enables this type of radar to detect targets that may not be detected

by non-UWB radars. The most potentially useful applications for UWB radars are for

detection of target with low radar cross sections (low observables), earth and foliage

penetration and, target identification. One disadvantage of UWB radars is the increased

signal processing computational burden associated with the high bandwidth which leads

to a proportional increase in system cost. This occurs because the number of resolution

cells present in a surveillance volume, probability of false alarm, and signal processing

load required for target detection all increase with bandwidth. Therefore, UWB radars

may be used only when the increased percentage bandwidth presents a distinct advantage

over conventional non-UWB radars [4].
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Finally, although UJWB radars operate with high peak powers, the system delivers a

relatively low power per Hertz in comparison to narrow band sources, therefore,

background radio frequency interference (RFI) becomes a significant factor to be

overcome when processing the radar returns.

UWB radars have bandwidths considerably greater than conventional radars. UWB

radar are defined as having a fractional bandwidth (BWfrO,W,,,J) greater than 0.25 [41.

where the fractional bandwidth is given by:

BWir,,cno..aI = 2 ( -f 1) / (f4+fI) (I)

The frequencyf4 is the upper bound frequency and the frequencyfj is the lower bound

frequency, and 99% of the energy within the signal resides in the frequency band

between fh and fl. The radar system described in this thesis is an impulse UWB radar

with a fractional bandwidth of 1.33.

B. THE NCCOSC RDT&E DIVISION ULTRA-WIDEBAND RADAR PROGRAM

The Research Development Test and Evaluation Division of the Naval Command

Control and Ocean Surveillance Center (NCCOSC RDT&E Division) in San Diego,

California has designed and built an impulse UWB radar system to explore the

applicability and potential of this technology for Naval requirements. The NCCOSC

RDT&E Division UWB radar system described in Pollack [5] was built in support of

these objectives, and was used to collect data on targets in the presence of sea clutter,

multipath and background RFI. This UWB radar operates between 200 and 1000 MHz

and the transmitted waveform consists of a single monocycle. Table I is a listing of the

specifications of the NCCOSC RDT&E Division facility.

The UWB radar is a bistatic system consisting of two thirty foot parabolic antennas

overlooking the Pacific Ocean at Point Loma in San Diego, California. Figure I is a

schematic of the radar transmitter and receiver. Data was collected on severai different

5



TABLE 1: NCCOSC UWB RADAR SPECIFICATIONS

Bandwidth 200-1000 MHz

Center Frequency 600 MHz

PRF 50 Hz

Pulse Width 2 ns

Peak Power 180 MW (pulser)

Average Power 0.5 W (pulser)

Peak Power 24 KW (radiated)

Minimum Range 5 m

Range Resolution 0.19 m

Design Detection Radar Cross Section 0.001 - 1 m2

targets, however only records containing target data for a small boat with a small

triangular trihedral comer reflector, and a small boat without a comer reflector are

considered in this thesis. In each case the target was approximately 1.86 Km down range

at an elevation of -3.3 degrees and the data was collected at ten pulses per second with no

on-line processing.

To detect targets in the presence of background noise, four signal processing

approaches were investigated and are described in detail in Pollack [5]. First,

consecutive pulses were averaged, second a matched filter was implemented, third a

windowed Fast Fourier Transform (FFT) was utilized, and finally undesirable RFI

carriers were excised. The figure of merit used in the analysis was the signal-to-RFI

ratio (SRR), which has units of decibels and is defined as the difference between the

maximum and the minimum peak in the signal divided by the root mean square value of

the RFI. Table 2 is a summary of the SRR improvement for each of the four processing

6
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Figure 1. The NCCOSC RDT&E Division UWB radar system

methods for records containing data for the boat with the corner reflector.

TABLE 2: SUMMARY OF SRR IMPROVEMENT

Matched Filtration 4-5 dB

Excision 13 dB

Averaging Consecutive Pulses 0-25 dB

Sum of Spectral Changes 34 dB

The technique of averaging consecutive pulses improves the SRR by capitalizing on

the semi-random nature of the RFI. The method sums the target returns semi-

coherently, however, the RFI is summed non-coherently, thereby increasing the SRR.

The greatest amount of reduction occurred after 40 pulses were averaged. Further

averaging improved the SRR only marginally due to the non-random nature of the RFI at

the Point Loma site.

Pulse averaging is a powerful signal processing tool, but suffers from several

drawbacks. First, the technique will not average out non-stationary noise. Second, if N

averages are required to achieve a satisfactory SRR, then the effec .dve pulse repetition

frequency (PRF) is decreased by a factor of N. This effect is a problem because the

7



UWB system has a maximum PRF of 100 Hz, and a minimum PRF of 50 Hz is required

to oversample the sea clutter at the Nyquist rate [5]. If the system is operated at the

maximum PRF then at most two pulses may be averaged in order to maintain the Nyquist

sampling rate criteria.

The matched fitter is often used in radar signal processing to maximize the output

signal to noise ratio and it is the optimal technique for the detection of known signals in a

background of white Gaussian noise (6]. Ideally, this occurs when the magnitude of the

matched filter frequency response function fH(o,) is equal in magnitude to the spectrum

of the reflected signal s(co)I, and the phase spectrum of the matched filter is a reversed

version of the received signal. The matched filter for the UWB system was obtained by

pointing, boresight to boresight, the 30 foot transmitting and 30 foot receiving antennas

directly at each other at a range of 70 feet. The radar system transfer function was

measured directly by digitizing the output waveform which was used to implement the

matched filter. The filtered output data records were computed by convolving the raw

data records with the matched filter response.

This method increased the SRR by approximately 5.4 dB. The poor processing gains

achieved with this method may be attributed to two reasons. First, the performance of

the matched filter is not an optimal filter due to the non-Gaussian nature of the RFI at the

Point Loma radar site. Second, the radar system transfer function may have been

distorted because the measurements were perfomied in the near field region of the

receiving and transmitting antennas.

The sum of spectral changes technique is a variation of the short time Fourier

transform (STFT) method discussed in depth in Chapter III. In short, this method is a

spectral analysis technique that is implemented by sliding a 16 point rectangular window

across the 1024 point data record one point at a time. Note, longer windows give better

frequency resolution but tend to smoothen non-stationarities and, shorter windows

8



provide better temporal resolution at the expense of frequency resolution. At each

windowj, the spectrum is obtained by taking the fast Fourier transform (FFT) and then

plotting the data on a time-frequency surface. To differentiate the UWB signal from the

noise in each time interval, the magnitude of the spectrum in window j is subtracted from

the spectral magnitude in windowj+J. Finally, in order to compute the amount the

spectrum variation from window to window, the spectral changes are summed across all

frequency bins. The result is a one dimensional plot of spectral change versus time that

provides an indication of how the spectrum of the RFI differs from the spectrum of the

RFH and target. This method requires the following assumptions concerning the UWB

waveform and return signal immersed in RFI:

1.) The RFI signal is stationary over the duration of the record.
2.) The transmitted waveform is much shorter in duration of the digitized data record.
3.) The return is pure RFI if no target is present.
4.) The received signal is the sum of the RFI and the reflection from the target.
5.) Only a few point targets exist within the window.

This method provided a 34 dB processing gain for the boat and corner reflector data

record but was unable to discriminate the target without the corner reflector [5]. The

poor processing gain for the record without the corner reflector may have occurred

because the first assumption may not be valid. The target could not be differentiated

because the RFI is not stationary from window to window, and could not be suppressed

by subtracting the spectrum of adjacent windows.

The last signal processing method used was excision of undesirable RFI carriers. This

technique takes the FFT of the data record and zeroes out the frequency bins of the

carriers containing the maximum spectral magnitudes. After the carriers are excised, the

altered spectrum is then transformed back to the time domain. For 16 excisions, this

method provided the best results. A maximum processing gain of 12.65 dB was obtained

for the data corresponding to the boat with the corner reflector. However, no significant

improvement was obtained for the data corresponding to the boat without the corner

9



reflector. The performance of this technique degraded after the excision of 16 carriers

due to the undesired removal the target spectrum.

With the exception of pulse averaging, each of the methods discussed above were

performed only on the first pulse of 172 pulse data record and may not reflect trends for

all pulses. In addition, the techniques perform adequately for the boat with comer

reflector but did not adequately suppress the non-stationary background interference

noise for the records without the comer reflector.
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III. GENERALIZED TIME-FREQUENCY
DISTRIBUTIONS

A. TIME-FREQUENCY DISTRIBUTION GENERAL DESCRIPTION

For band limited, wide sense stationary random process x(t), the power spectral

density (PSD) of the process is related to the autocorrelation function R, (r ) of the

process by the Wiener-Khinchine theorem [7]:

P"" (f) = i R, (r)e-J,21dr. (2)

For finite data sets of time interval T the PSD is exoressed as:

A T

P,• (f) = R. (r)e-iJ2 'dr. (3)
0

The PSD has units of power per Hertz and is bandlimited to ±1 / 2T Hz. In addition, the

PSD is a strictly real, positive function with the property R., (- r) = RT ( r), where the bar

over the autocorrelation function indicates the conjugate of that term.

Signal energy can also be expressed as a two dimensional joint function of time and

frequency TF(t,f). Time-frequency methods provide a time history of the power

distribution within a signal and are valuable tools for characterizing signals whose

properties change with time. A comprehensive list of the important properties of valid

time-frequency distributions is provided in Cohen [1], however, the following three

relationships must hold to make the PSD a true energy distribution. First, the time

marginal probability distribution represents the energy density spectrum:

J TF(t, f)dt = IX'f)1. (4)

Secondly, the instantaneous energy is given by:

f TF(tf)df =jx(t)j . (5)
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Finally, the total energy of the signal is given by:

fJf TF(t,f)dtdf =E1.- (6)
ft

B. THE FOURIER TRANSFORM (FT)

The basic method for determining the frequency content of a time domain signal s(r)

is the Fourier transform:

S(f) = s(t)e-J2'*dt, (7)

where the Fourier transform, S(f), contains the frequency information, but lacks temporal

information. For finite data sets of length T, the estimated PSD, or periodogram, can be

obtained directly from the data by squaring the magnitude of the Fourier transform:

A T 2
P.,(f) f s(r)e-' (8)

10

Thus, the periodogram is a one-dimensional spectral analysis tool that calculates the

relative intensity of each frequency component. The methods based on the presumption

of local stationarity within the signal and is satisfactory for signals composed of multiple

stationary components (e.g., sinusoids) separated by an arbitrary Af in frequency.

Unfortunately, the basic Fourier transform is of limited use for non-stationary signals

because the transform does not track temporal variations within the spectrum. For

example, the time at which an abrupt change in signal behavior (e.g., due to a transient)

occurs is not apparent from a periodogram because the energy is spread across the entire

spectrum. As a result the distribution does not provide information concerning the

spectral evolution of a signal in time.
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C. THE SHORT TIME FOURIER TRANSFORM (STFT)

The Short Time Fourier Transform (STFT) is a method devised to introduce time

dependency into the Fourier analysis of a signal. The STFT is a joint function between

time and frequency that maps the original time domain signal into a two-dimensional

time-frequency surface. This representation is useful because the method provides

information on spectral variations that occur as a function of time within a signal.

The time-frequency surface of the spectrogram is obtained by separating the data into

contiguous blocks of equal length (or windows) and computing a spectral estimate from

each block. Juxtaposing the spectral estimates obtained from adjacent windows results in

an estimate of the time-frequency surface. The squared modulus of the time-frequency

surface is called a spectrogram. The spectrogram represents a valid PSD that meets the

criteria of equations (4-5).

The use of finite time windows in the STFT allows direct association between

temporal and spectral behavior of a signal. If significant changes occur faster than the

time interval under scrutiny, then the time window can be shortened to increase the time

resolution and ensure local stationarity. Shorter windows in time are better able to track

non-stationarities, however, such reductions reduce frequency resolution. Conversely,

longer windows in time increase frequency resolution and increase temporal distortions.

The STFT uses a sliding window g( r) centered at location t:

P(t,= Js(t)g(r- t)e-J2 f'd (9)
0

The spectral estimate provided by the spectrogram is real-valued and positive and

assumes local stationarity. The time-frequency resolution is fixed over the entire

distribution. The frequency resolution of the time-frequency surface is defined by:

6f ..2 f 2 [G(f)]2 df (10)
.[G(f)I 2df
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where G(f) is defined as the eourier transform of the window. The introduction of a

sliding window causes smearing along both time and frequency axis. As a consequence,

two signals must be separated by A f in frequency in order to be resolved. Alternatively,

the time resolution is:

& F t2[g(t)]
2 dt

i~ 2 -- -•_[g(t)12 dt 011)

Two pulses in time can be discriminated only if they are separated by A t. Resolution in

time and frequency cannot be arbitrarily small as their lower product is bounded by the

Heisenherg uncertainty principle [8]:

AtAf _1/2, (12)

which demonstrates the tradeoff between frequency and time resolution. The degree of

smearing depends on the type of window employed and windows, such as Gaussian

windows, that meet the lower bound of the Heisenberg criteria are especially desirable

because they provide the best simultaneous time-frequency resolution. However, a 41

point Chebyshev window with 10 point step size was employed in this thesis. This

window was chosen because it provided very little ripple in the pass band and the pass-

band has a very sharp roll-off after the cutoff frequency.

D. THE WIGNER-VILLE DISTRIBUTION (WD)

Stationary methods, such as the periodogram and spectrogram, assume slow

temporal variations in the signal and use finite analysis windows that segment the data

into lengths that approximate local stationarity. Therefore, the data in each segment must

contain enough information to characterize the property of interest, without distorting

that property. When the assumption of local stationarity is not valid, then the PSD

estimations produced by stationary techniques fail to produce an accurate energy

distribution of the signal. For a finite data set of length T, the effects of this problem can
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be minimized through the substitution of a time-dependent autocorrelation function of

the form [9]:

I 11+T"

R,,(tt,+ r)=- Js(t)s(t+ r)dt (13)
TI

into equation (3). Next the following variables r, and t, are defined:

t =t-- and t,=t+-,
2 2

which are rearranged as:

t=t,-t, and t- (14)2

Substitution of these variables into the equation (13) yields:

R.(t2,t= R. (t -+,t--r)
2 2

E(tre--) (15)

2 2

The Wigner-Ville distribution is derived when equation (15) is substituted into equation

(2) and, an instantaneous autocorrelation value is used in the Wiener-Khinchine theorem:

WD(r, f) = s(+ -)s(t - -)e-'24dr. (16a)

± 2 2

The discrete form of equation (16) is:

WD(n,f) = 2 is(n+ k)s(n -k)e-','*. (16b)

Note, that the Wigner-Ville distribution is a quadratic time-frequency distribution. In

addition, the distribution may be interpreted as the Fourier transform of the

instantaneous, symmetrical Wiener-Khinchine autocorrelation function and, the PSD is

equal to IWD(t, f)1.
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The WD distribution is able to accurately represent temporal fluctuations while

maintaining good frequency resolution, however at the endpoints of a finite data

segment, the method suffers from degraded time-frequency resolution [10].

The primary disadvantage of this method is the existence of cross terms (interference

artifacts between the components in a multicomponent signal) in the time-frequency

plane that occur as a result of the bilinear properties of the distribution. For example, if a

signal i(t) consists of two components s,(t) and s,(0), then:

WD5 (tf) = WD,,, (t, f)

WD$ (tf)+ WD, (t,f)+ 2 Re[WD (0, f)]. (17)

The WD of s,(t) and s.,(r) are defined as auto-WD or autoterms [11] of the distribution.

WD,,,, (t,f) is referred to as the auto-WD of the product s, (t) s,(0), and is defined as

the cross terms of the distribution. If s (0) occurs at time ti and frequency f, and s, ()

occurs at time t2 and frequency f 2, then the autoterms for each component are centered

on the time-frequency surface at (t1,f,) and (t 2,fA) respectively. The cross terms are

centered in midtime and midfrequency between (t,,f,) and (r.t,f2). Thus, as the number

of components increases, an n component signal always has n) cross terms. As the

number of cross terms increases the time-frequency distribution becomes difficult to

interpret and the autoterms become less apparent.

The Wigner-Ville distribution is periodic with ir, not 2x. As a result, a real signal

must be sampled at twice the Nyquist rate or the analytic version of the real valued signal

must be used in the WD algorithm to be prevent aliasing.

E. THE INSTANTANEOUS POWER SPECTRUM (IPS)

The instantaneous power spectrum is obtained by defining an averaged

autocorrelation function of the following form [12).
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R.(, t)= 2 x(t)x(t + r) + X(t)x(t - r)]

This expression is used as a spectral estimator and can be interpreted as the coherent

average of two terms [101. The first term of the autocorrelation function uses only past

information, while the other uses only future information.

Substitution of equation (18) into equation (3) gives the continuous form of the IPS

distribution [10]:

IPSOf) xt)x(t + r)+ x(t)x(t- r)l -121d". (19)

The discrete form of equation (19) is:

JPS(n, f) 2 ! [x(n)x(n + k) + x(n)x(n k+ (20)

IPS can be interpreted as the instantaneous cross-energy between the signal x(t) and a

filtered version the signal at frequency f and the distribution is a valid estimate of the

PSD [10]. The IPS time-frequency surface provides an enhanced spectral representation

for multicomponent signals, relative to the WD surface, because the cross terms of the

IPS distribution are centered on the autoterms. In addition, IPS also features improved

spectral resolution at the signal endpoints and, the minimum sampling rate is the Nyquist

rate [10].

17



IV. THE CONTINUOUS AND DISCRETE WAVELET
TRANSFORMS

A. INTRODUCTION

Traditional signal processing techniques rely on variations of the Short Time Fourier

Transform (STFT). These methods multiply a signal s(t) with a compactly supported

window g(t) centered around an arbitrary point and compute the Fourier coefficients.

The coefficients prcvide an indication of the frequency content of a signal in the vicinity

of the arbitrary point. The process is repeated with translated versions of the window

until the signal is mapped into a time-frequency surface constructed of the Fourier

coefficients obtained at each translation. This process uses a single analysis window

featuring a constant time-frequency resolution and is well suited for analyzing signals

consisting of a few stationary components with spectral descriptions that evolve slowly

with time.

Once a type of window has been chosen for the STFT, then the time-frequency

resolution across the time-frequency surface is fixed and a tradeoff between time and

frequency resolution is created. This tradeoff is referred to as the Heisenberg inequality

[13] and means that one can only trade time resolution for frequency resolution. The net

effect of this effect is that classical STFT methods are limited in non-stationary

applications because abrupt changes in signal behavior cannot be simultaneously

analyzed with long duration windows required for good frequency resolution, and short

duration windows required for good temporal resolution.

For non-stationary signal analysis, the wavelet transform produces a time-scale

representation that is comparable to the time-frequency representation obtained with the

STFT but which is better able to track abrupt changes in signal behavior. The wavelet

technique uses a single analysis window which is contracted at high frequencies and is

dilated at low frequencies [ 131. Although the time-bandwidth product, equation (11),
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remains constant, this method provides good time resolution at high frequencies and

good frequency resolution for low frequencies.

Wavelet transforms are used for problems where joint resolution in time and

frequency are required. Applications include speech, image and video compression,

singularity characterization and noise suppression in non-stationary signal analysis [13].

Wavelets can also act as bases functions for the solutions of partial differential equations

and provide fast algorithms for matrix multiplication [ 13].

The continuous wavelet transform (CWT) is given by:

where s(t) is the signal and, g(t) is the conjugate of the analysis window g(t), or

analyzing wavelet, and may be thought of as a high pass filter. The scale factor a

denotes a dilation in time. and n a time translation. The factor I/NG normalizes the

expression so that the squared magnitude of the CWT coefficients have units of power

per Hertz.

If we define g.(t) = g(t/a) / Va and g'.(t) = g.(-t) then, equation (2 1a) may be

rewritten as a convolution:

CWT,(a,n) = s(t)*ig÷(t). (21b)

Thus, the wavelet operation can be seen as a filtering operation of s(t) with a high pass

filter of impulse response g;.(t). Using the properties of the Fourier Transform (FT),

the CWT expression can also be given in the frequency domain:

CWT7 (a,n) = i-l J S(o)G(aw)eJ"' 'dao

= .aI IFfS(o.)G(aw)]P. (21c)

In order to be considered a valid analyzing wavelet, the function g(t) is required to be

zero mean, admissible and progressive [14]. The admissibility condition is defined as:
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Jiylfd< co (22a)

which implies:

f g(t)dt = 0 (22b)
t

and is used to ensure that the transformation is a bounded invertible operator. A

progressive wavelet is defined as a complex-valued function that satisfies the

admissibility condition and whose Fourier transform equals zero for negative frequencies

i.e., G(co) = 0 for co < 0.

The CWT can be interpreted as a continuous bank of STFTs with a different

bandwidth at each frequency. This behavior occurs because the time resolution of the

analyzing wavelet is directly related to the scale a and the frequency resolution of the

wavelet is inversely related with scale. Low scales correspond to high frequency

components and provide good time resolution. High scales correspond to low

frequencies and a comparatively poor time resolution.

In short, the primary difference between the STFT and the wavelet transform is that

the basis functions of the STFT have a constant time and frequency resolution over the

entire time-frequency surface while wavelet transform has a time and frequency

resolution that varies as a function of scale. The differences between the time and

frequency resolution for the STFT and CWT are illustrated in Figure 2.

The discrete form of the continuous equation is:

DWT (a,n) = (23)

where the scaling factor a is defined as:

a =a1(24)

and i is an integer number that is termed the octave of the wavelet transform. The factor

ao0 ' indicates that the output at each octave is subsampled by a factor ao' i.e.. the
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frequency resolution at each octave is decreased by a factor of a0. The choice of a.

governs the accuracy of the signal reconstruction via the inverse wavelet transform [15].

For most applications a0 = 2 is used because it provides numerically stable reconstruction

algorithms and very small reconstruction errors.
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Equation (23) is a computationally burdensome form of the wavelet transform

because the length of the DWT vector doubles for each octave. For example, at the fifth

octave the length of the DWT vector is 25 larger than the original signal [161. To ease

this burden, the decimated version of the wavelet transform was developed ( 181, [21 and

is as follows:

DWT(2,2'n)= V2 g( r-n)s(k). (25)
k

The 2'n term in equation (25) indicates that the length of the output vector at each octave

is halved by preserving even points and discarding odd points. This operation keeps the

number of DWT coefficients constant as the scale increases.

B. DESCRIPTION OF THE DWT ALGORITHMS

Three discrete wavelet transform algorithms are described in the following sections.

The "discrete" continuous wavelet transform (DCWT) is an undecimated transform that

uses non-orthogonal bases functions i.e., the output is not subsampled by a factor of 2',

and the analyzing wavelet is admissible, progressive and zero mean. However, the

analyzing wavelet does not meet the strict criteria required for orthogonal wavelets

outlined in Section E. The a trous discrete wavelet transform is a non-orthogonal

decimated transform [21, and Mallat's algorithm is an orthogonal, decimated version of

the discrete wavelet transform [2].

Non-orthogonal discrete wavelet transform coefficients are not independent and

contain redundant information at each octave. Because of their filter properties, non-

orthogonal wavelets are desirable because they provide a measure of noise reduction, and

have relative bandwidths that mat be controlled by the user. In this thesis, the only non-

orthogonal analyzing wavelet considered is the Morlet (modulated Gaussian window)

wavelet. The disadvantage of this wavelet is that it is not truly finite in length (not

compactly supported) and the original signal may not be reconstructed from the wavelet
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transform, as only wavelets with finite length filters may be inverted. Orthogonal

wavelets are used because they are mathematically elegant, do not contain redundant

information wavelets and do lend themselves to signal reconstruction with small

reconstruction errors. The major drawback is a lack of flexible filter design that leads to

a fixed relative bandwidth of ir/2.

Apart from their filter constraints, the a trous algorithm and Mallat's algorithm are

identical multiresolution algorithms that may be implemented with filter bank structures

[3] that process the signal at different resolutions (r') that decrease with increasing

octave i. Multiresolution representations are defined as processes that reorganize the

signal into a set of details (discrete wavelet transform coefficients) that are computed at

each r'. Each r' can thought of as a smoothed (low pass filtered) version of the original

signal. Given a series of resolutions that decrease with each octave, the wavelet

coefficients at each octave are defined as the difference of information between r' and

its approximation at the lower resolution r'÷1 .

The multiresolution filter bank may be viewed as a two step algorithm of the type

shown in Figure 3 (note, s' denotes the signal at resolution i, the boxes indicate

convolution and the down arrow denotes subsampling by a factor of 2). First, the high

frequency information is obtained by using the analyzing wavelet g to filter the signal at

octave i (s'). The output of the high pass filtering operation is be referred to as the

discrete wavelet transform of the signal at octave i (w' for the non-orthogonal case and

d' for the orthogonal case). Second, in preparation for the next octave s' is filtered by

the low pass filters, also called scaling functions, denoted byf for the non-orthogoneJ

case or h for the orthogonal case. The output is referred to as the approximated signal at

octave i+ 1 (s'÷'). This procedure repeats itself as s'÷' is filtered by g at the next octave

until the detail at each desired octave is computed.
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Figure 3. Generic multiresolution filter bank for the DWT

The feature that distinguishes the a trous algorithm and Mallat's algorithLm is the

choice of filters, low pass filtersf or h and, and high pass filters g. For the orthogonal

wavelets the high pass filter g is determined directly from the low pass filter h, while for

non-orthogonal implementations the high pass filter must only be admissible, progressive

and have zero mean and not obtained directly from the low pass filterf. In this thesis,

only Morlet windows will be used as the high pass filter for the non-orthogonal case.

The a trous wavelet transform is a computationally efficient algorithm that computes

an exact version of the continuous wavelet transform at discrete points. The method

features a relative bandwidth that may be chosen by the user at each octave, but is not

invertible (i.e., the original signal cannot be reconstructed from the DWT coefficients)

[2]. This occurs because the Morlet wavelet is not a finite filter. Mallat's algorithm has

different properties. It computes a discrete approximation of the continuous wavelet

transform and is invertible [3] but suffers from a fixed relative bandwidth fixed at Yr/2,

and therefore has poorer frequency resolution relative to the a trous method.

C. THE SCALOGRAM

The spectrogram is defined as the squared modulus of the STFT and provides the

energy distribution of a signal with constant resolution on a time-frequency plane. The

wavelet spectrogram, or scalogram [ 131, is defined as the squareu modulus of the wavelet
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transform coefficients WT(2',n), and has units of power per frequency unit. The scale-

time surface represents a distribution of energy in the time-scale plane.

The scalogram has the same units as the spectrogram but has varying time-frequency

resolution. The behavior of a signal on any point on the time axis is localized in the

vicinity of the point for small scales. The region of influence of the signal becomes

cone-shaped in nature in the time-scale plane as the scale is increased and conversely,

the area of localized behavior of a specific frequency on the scalogram shortens as the

scale becomes greater.

D. THE NON-ORTHOGONAL DISCRETE WAVELET TRANSFORM

1. The Analyzing Wavelet

The analyzing wavelet used in this analysis is a modulated Gaussian window, or

Morlet window [2], of the following form:
g ( t) = e J e-• ' ". (26)

The parameter k is a constant that determines the modulating frequency of the window

and 3 [2] is a constant proportional to the bandwidth of the analyzing wavelet. This type

of wavelet was chosen because it meets the lower bound of the Heisenberg ,riteria [8]

and provides optimal resolution in time and frequency [ 14], [151. In general, modulated

Gaussians are also desirable because their set of linear combinations for pointwise

multiplication and convolution is closed and invariant under the Fourier transform.

However, the Morlet window is not strictly admissible or progressive because the tail of

the Gaussian extends to infinity but, may be forced to approximate these conditions if the

window length (L) is on the order of 2,1//3 [2]. For the algorithms in this thesis the

relationship L = 2,I2/fi was used for the a trous algorithm.

The a trous discrete wavelet transform uses the unscaled time domain form of the

Morlet window shown in equation (26) in the filter bank implementation of the

algorithm. The "discrete" continuous wavelet transform uses a scaled version of the
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Fourier transform of the Morlet window described below, however the constraints for/(

and k outlined below apply to both algorithms.

The Fourier transform of the modulated Gaussian window in the unscaled

frequency axis (wo)) is:

G(to,) = ,j2•e• . (27)

Frequency scaling is accomplished through he introduction of the scaling parameter a,

where wo. = aw:

G(ao) = 2-ire-- (28)

To ensure that G(aw)acts as a highpass filter in the upper half of the spectrum, is

admissible and analytic (progressive) and, the spectrum is not aliased, the following

restrictions apply to k and 3 [21:

r/2 5 k < in (29)

P:5 k/2mr (30)

k 5 x-I-F'/ (31)

and may be summarized as:

max(2in(3, x /2) < k 5 rx- vfi3. (32)

The 3 dB absolute bandwidth of the window is 2vIi3/1 a and decreases as the

number of octaves increases. The relative bandwidth (RBW) remains constant for all

octaves and is defined as [2]:

RBW = 2P1 (33)

k

The RBW is proportional to ( and is constrained by

[3 < RBW < 2P. (34)

The frequency resolution may be increased by employing a bank of filters called

voices (M) that effectively decreases the RBW. This process may be thought of as a

series of frequency translations of the analyzing wavelet that uses filters of the type

26



j

g(t/a), with a = 2M wherej varies from 1 to M-I. The number of filters, or voices (M),

in the filter bank is directly proportional to the amount of the upper ihalf of the signal

spectrum passed. The number of voices is related to J3 (i.e., RBW) by [21:

1
M =ý 1 (35)2P3

and the windowing function now has the form:

8(M) = g( 2 n•j (36)

The term j in the denominator refers to the J:h voice out of a total of M voices and the

bandwidth of the filter at each voice decreases withj. As shown in equation (35), an

increase in the total number of voices implies a decrease in j or RBW, which in turn

implies an improvement in frequency resolution. This benefit is offset by the loss of

temporal resolution due to the uncertainty principle and an increase of the computational

load by a factor of M per octave.

2. The "Discrete" Continuous Wavelet Transform (DCWT)

Recall from equation (27) that the CWT of s(t) may be expressed as:

CWT, (a,n) = ia f S()G0(aco))e 0" dow

4av' IFýfS(co)G;(ao4].

where IFT indicates the inverse Fourier transform, a = 2', and S(O) is the Fourier

transform of the signal s(t). The function G(aw)is obtained by replacing the digital

frequency in equation (2Ic) with)= 2Tf,/N (where f, is the sampling frequency and N

is the number of points in the window). The resulting Fourier transform of the sampled

discrete Morlet window is given by:

---a(2 1 = e (37)
~2N
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First, the DCWT algorithm uses of the fast Fourier transform (FFT) to calculate

the Fourier transform of the data s(n). Next, the DCWT coefficients at each octave are

obtained through the inverse Fourier transform of the product of the transformed window

and data record. The code is presented in Appendix A. This mezhod is an undecimated

form of the wavelet transform because it preserves all points in the original data

sequence. The bandwidth of the window is decreased by a factor of 2' at each octave and

the window length used is 1024 points.

3. The a trous Discrete Wavelet Transform

The a trous algorithm is a nonorthogonal decimated discrete wavelet transform

algorithm proposed by Holscheider et al [ 17] and first implemented by Dutilleux [ 161

that is designed to approximate the discrete wavelet series shown in equation (25). As

explained earlier, this algorithm is computationally efficient because the number of non-

zero DWT coefficients are kept constant as the scale parameter 2' increases.

This method is used to approximate the nonintegral points of the analyzing

wavelet g with an interpolation function f÷. The interpolation filter f+ is a low pass

filter that must satisfy the a trous condition:

f+(2k) = 3(k) / - (38)

which means the filter must preserve the even points and discard the odd points of the

data sequence. In addition, both f+ and g + are both defined as a symmetrical mirror

filter with the property that the filter is equal to the conjugate of the time reversed

version of itself:

f(n) = f+(-n). (39)

The unshifted and unconjugated form of the analysis window g in equation (25) may be

approximated by the following function [21:

V2g+ (1/2) f+(I- 2m)g+(m). (40)

28



In short, the interpolating function dilates g by placing zeros between each pair of

coefficients and then the filter f* interpolates the even points to get the odd points.

To derive the a trous algorithm, we set I = k - 2n and write the conjugated form

of equation (40) as:

-=gl÷(k-2n f +f÷(k - 2n - 2m)g÷(m)" (41)

When i is set equal to one, e.g., the first octave, and equation (41) is substituted into

equation (25), the result is:

DWT(2,2n) X[Yf'(k 2n 2m)g+(m) (k). (42)

Using the mirror filter properties of f and g, equation (42) can be written as:

DWT(2,2n) = Yg (p- n),f+ (k - 2p)s(k) (43)
p k

and applying the mirror filter property leads to:

DWT (2,2n) = 7_ g(n - p)J f(2p- k)s(k). (44)
p

The term y Pf(2p-k)s(k) indicates convolution followed by decimation and may
k

rewritten as [2]:

,f(2p- k)s(k) = A(f* s) (45)
k

where A indicates subsampling or decimation by a factor of 2' at each octave i. Now,

equation (44) may be rewritten in terms of equation (45) as:

DWT (2,2n) = [g * (A(f * s))].. (46)

Equation (46) was derived for i=1, but can be generalized in a two step

multiresolution algorithm for i > 1 if s is replaced with s'. This leads to the following

recursive algorithm:

si÷+ = A(f * si) (47a)
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w' g*sI. (47b)

The discrete wavelet transform coefficients w' (where w' = DWT(2',2'n))

computed by equation (47) are obtained when the filter g high pass filters the upper half

of the spectrum of the signal at octave i (s'). Next, the low frequency information is

preserved by the filterf and then decimated to yield the data sequence for the signal at

the next octave (s'+'). Note, the analyzing wavelet used in this algorithm is shown in

equation (26).

The filter bank implementation of equation (47) is shown in Figure 4a. Note the

down arrow indicates the decimation operation and the box indicates the convolution

operation. Care must be taken to center the filtersf and g to ensure proper alignment of

the wavelet coefficients in the scalogram. This concern is illustrated further in Chapter

V. Finally, the two choices of a trous interpolating filters used in this thesis are [2]:

f [0.5, 1, 0.5] (48a)

and

f0, 1, -, 9 - 1]. (48b)

E. THE ORTHOGONAL DISCRETE WAVELET TRANSFORM

1. Mallat's Discrete Wavelet Transform

Mallat's algorithm was originally devised as a computationally efficient method to

decompose and reconstruct images [3]. This technique is an orthogonal multiresolution

wavelet representation that is used to approximate a signal at a given resolution r,, and, is

also a multiresolution representation that may be implemented in a filter bank structure

similar to the a trous algorithm. First, let us introduce some new notations. Z and R

denote the set of integer and real numbers respectively. The region L2 (R) is dc fined as a

vector space containing the measurable, square-integrable one-dimensional functions s(x)

[3]. Next, following Mallat's notation [3] rý is defined as the resolution, in which the
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Figure 4. DWT filter algorithms

(a) The a trous algorithm
(b) Mallat's algorithm

integerj decreases with increasing scale, not in terms of r1 in which octave j increases

with increasing scale (i.e., the resolution is decreased as integerj decreases from zero

to -* or, as integerj increases from zero to + -). Finally the signal s(n) is defined as

s(x) in this section to stay consistent with Mallat's notation.

To implement the algorithm in a two step filter bank structure, the signal s(x) is

first approximated at successive resolutions r, and r,-, by a low pass filter. Next, a high

pass filter is used to extract the detailed information between the approximations of s(x)

at r, and r,-,. The low pass and high pass filters are defined as functions O(x) and 'f(x)

respectively, and are also referred to as the scaling function and analyzing wavelet. Both

the functions O(x) and V(x) are members of the orthogonal closed linear subspace
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L2(R). The orthonormal basis used in the decomposition is defined as a family of

functions that are built by dilating and translating a unique function OWx).

For the special case r,= 2 , the signal decomposition is achieved by

approximating the function s(x) at resolution r, with the scaling function O(x). Thus, the

orthonormal basis can be constructed by dilating and shifting the scaling function with a

coefficient 2 . (v,)1 is defined as a family of closed, linear span of subspaces and is
jez

the set containing all approximations at resolution 2 j of functions in L (R) (3]. The set

of vector spaces (v,)Ez has the following properties tfor j e Z):

V2, c L(R) (49a)

vl2, ={m} (49b)

UK, = L2(R) (49c)

where the double bar indicates closure. The space 02, is defined as the orthogonal

complement of the space (v ,)jz ,and both of these spaces are related by:

0 2, ( V2 = V1,.' (49d)

A graphical interpretation of these spaces is presented in Figure 5 [18].

if (K" )JEz is a multiresolution approximation in L?(R) then there exists a unique

function, or scaling function O(x) such that if we define dilated, and dilated and shifted

formversions of 0, (x):

02, (x) = 2j 0(2i x) (50)

O02 (x- 2- n)= 22 2J(x- 2-J n))

= 22 0(2'x-n). (51)

Then, the set of scaling functions (2 2 0 (x - 2-'n) define an orthonormal basis for

V2 that lies in e (R). In addition, the scaling function O(x) has the property that the
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Figure 5. Orthogonal vector subspaces for Mallat's DWT
algorithm

version at scale 21 can be approximated by a version of itself at scale 2"' [3]:

(0x-,') (x - 2-)n), 0,,.,(x - 2-'k)o,,., (x - 2-J'k). (2
k

The inner product (IP) in the above expression~ can be simplified as follows:

IP =2"'(0,J (x - 2' n), 02, (x - 2-J- k))

= 0~'J2i (u - 21 n)o,,., (u - 2-j' k)du

2= -2 10[2 (21 u -n)2i+14J(21Au -k)du1

=2j j 0(2 u -n)0P(21+'u -k)du. (53)

Using the following substitutions:

2+ = v

2'+'du = dv

in equation (53) leads to:
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IP = 2' 0(2-'v-n)O(v-k)2--l'dv

= 2-1 0(2-'v - n)O(v - k)dv.

= 2-1 J2-1 (v - 2n))p(v - k)dv. (54)

Replacing w=v-2n in the above equation leads to:

IP- 2-' 02-T'(w)]O(w + 2n - k)dw

f 02-, (w)O(w - k + 2n)dw

Then substituting the expression for IP in equation (52) leads to:

IP=(02-' (w), 0(w - (k - 2 n))). (55)

02J (x - 2-'n) = X.(02 _. (w), O(w - (k - 2n)))O,,., (x - 2`' k). (56)
k

Let h(I) be defined as the discrete filter with impulse response:

h(1) = (0', (u),O(u-l)) (57a)

thus for I=k-2n:

h(k - 2n) = (0,-, (w), O(w - (k - 2n))). (57b)

Let h÷ be defined as the mirror filter with the impulse response h+(l) = h(-I). Replacing

h÷ in equation (57b) we observe:

h÷(2n -k) = (o, (w), O(w- (k - 2n))). (58)

Therefore, equation (52) may be written in terms of h÷(2n - k) and the scaling function

at 2 j+':

0,, (x - 2-j n) = h+ (2n - k)02,., (x - 2-i-'k). (59)
k
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At resolution 21, the operator A,,s(x) is defined as the discrete orthonormal

projection of the signal s(x) on the orthonormal basis 2 2,, (x - 2-' n) and is

characterized by the set of inner products:

A2,s = ((s(x),0 2,(x- 2-i n))),Z. (60)

A , s is obtained by projecting the function s(x) onto the orthonormal basis

2 2 (x -2-Jn)
)MOZ

A Vs(x) = 2-iXY(S(X) 021 x -2-ik))ýp1 (x -2-J k)
k

Using equations (50) and (58). this leads to:

A2, s(x) h+ X (2n - k)(S(X),0 2 1.,(x - 2-Jk))
k

h' •h(2n - k)A,,., s W. (61 )
k

Equation (61) shows that A2,s(x) may be obtained by convolving A,,., s(x) with

the filter h and keeping every other sample of the output i.e., decimating the output.

Thus, A2Vs(x) acts as a linear approximation operator for signal s(x) and is used to

compute the orthogonal projection of the signal onto the vector space V, c I (R). The

vector space Vv, can now be interpreted as the set of all approximations at resolution 21

of the functions in Le(R), therefore, A,,s(x) is the approximation function most similar

to s(x) in L2(R). Note that when computing A2Js(x) at resolution 2' some information in

s(x) is lost, but as the resolution is increased (i -+ +-o), the approximation converges to

the original signal. Thus, equation (61) can be rewritten in a recursion in terms of s, j

and the decimation operator A:

sJ÷• = A(h÷ * s ) (62)

where the starting point so is defined as the original sequence s.
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The difference of information between two resolutions is defined as the detail

signal [31 and is the orthogonal projection of s on space the 0,, .where 0,, is the

orthogonal complement of the space V,,. Therefore the space 0., contains the detail

signal information between Azs and A,,.,s in 19(R).

An orthonormal basis of 0, is built by dilating and translating a wavelet

analyzing function. Following Mallat's development, let P(x) be defined as the wavelet

function and let:

T 2, (x) = 2"(21 x)

denote the dilation of -'(x) by 2', then:

T',(x-2-'n)=22 P(22(x-2 n))

= 22 (21x- n). (63)

Now the orthonormal basis (2I , (x - 2-n can be expanded as:

I, (x-2-Jn)=2-i-1,('•,,(u-2-J n), 2 ,.,(u-2-'-k)O>,., (x-2`1-k). 64)
k

Similar to the development of h(l), the filter g(l) is defined as the discrete filter with the

impulse response:
g~l (U), O(u), - l))

for l=k-2n we get:

g(k - 2n) = (F,-, (w),4(w - (k - 2n))). (65a)

Using the mirror filter property h'(l) = h(-I) leads to:

g" (2n - k) = ('2r, (w),O(w- (k - 2n))). (65b)

Next, substituting equation (65b) into equation (64) yields:

P2, (x- 2"jn) = X g÷(2n -k) ,0, (x- 2--•'k). (66)
k
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Let D2,s(x) be defined as the orthogonal projection of the detail signal on the space 02,

which contains the difference of information between A,,s(x) and A,,.,s(x). D2,s(x) is

computed by decomposing the signal s(x) into the orthonormal basis

2(•2 q', (x - 2-1 n)) :

D,, s(x) = ((s(x), W, (x - 2Jn))) + g(2n-k(x) (x 21)
= ngg 

-
k) A( 

) 
1s,()

k

= 1,g÷(2n- k)A,,.s(x)
k

=A(g * s). (67)

Qualitatively, equation (67) shows that the detail signal at each octave can be computed

by convolving the signal with the filter g and keeping every other sample. This

implementation can be visualized by the filter bank structure shown in Figure 4b.

2. The Relationship Between The Analyzing Wavelet and The Scaling Function

Both the a trous and Mallat's algorithm are multiresolution algorithms that may be

implemented using filter bank structures. These two methods are implemented in the

same manner, but differ in the choice of filtersf, h and g. In the a trous algorithm, the

choices of filters f and g are limited to different sets of criteria that make each a valid

filter suitable for this technique. In Mallat's algorithm the filters h and g are constrained

by the orthogonality restrictions explained below and have filter impulse responses

directly related to one another. Note that the a trous interpolating filtersf are related to

the orthogonal filters h by the following relation [2]:

h * h /=f/4V (75)

The relationship between the Fourier transform of the analyzing wavelet and the

Fourier transform of the scaling function is given in Theorem 3 in Mallat [31:
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w(w) = -(-2 ,2 (68)

with

G(O)) = e-'jH(ao+ iY). (69)

In the time domain, the impulse response of the orthogonal filter G(ta)is related to the

impulse response of the orthogonal filter H(a) by [3]:

g(n) = (-1)'" h(I - n). (70a)

and the causal form of equation (70a) is given by [191:

g(n) •-(1)" h(L - I1- n). (70b)

The filters h and g must have compact support (i.e., zero outside a finite interval)

and to ensure orthonormal resolution are constrained by [21:

X[h(2j - n)h(2j - m) + g(2j - n)g(2j - m)] = (7 la)
J

,h(2n-j)g(2m-j) = 0 (71b)
j

xg(n) = 0 (7 c)

Xh(n) = /2-. (7 1d)

Daubechies [15] has discovered an entire family of wavelets that satisies the above

conditions. Three examples of this type of filter are the two, four, and twelve point

filters shown below:

h=1[l 1] (72)

h = 4 I +3 3 +-v5, 3 - r3, I - NF (73)

h =[0.112, 0.494, 0.751, 0.315, -0.226, -0.130, (74)

0.98, 0.028, -0.032, 0.005, 0.005 , -0.001].

38



V. COMPARISON OF THE ALGORITHMS

A. DESCRIPTION OF THE TEST SIGNALS

The Short Time Fourier Transform (STFT), Wigner-Ville Distribution (WD),

Instantaneous Power Spectrum (IPS) and Discrete Wavelet Transform (DWT)

algorithms are applied to the following five test signals: an impulse function, a single

complex sinusoid, a linear chirp, two crossing linear chirps and two crossing linear chirps

in white Gaussian noise (WGN) with a 0 dB signal-to-noise ratio (SNR). The respective

equations used for the test signals are:

s(n) = L5n- 256) (76)

s(n) = eJ2m0l.2)P (77)

s(n) = e j:2 ' 01 )' (78)

s(n) = ej2A('.On + e j2-'0.lX124-') 2  (79)

s(n) = ej2X.01)'2 + ej2fi°lX1024-#i)2 + WGN(n). (80)

Each record consists of 1024 points. The impulse and single complex sinusoid occurred

at bin 256.

B. DESCRIPTION OF THE ULTRA-WIDEBAND RADAR (UWB) SIGNALS

In this thesis, we have investigated UWB radar signal returns from a small boat (with

and without a corner reflector) in the presence of sea clutter, multipath and radio

frequency interference (RFI). In each case, the small boat was located at approximately

1.86 Km from the radar site at an elevation of -3.3 degrees. The corner reflector was

triangular trihedral in shape and was located approximately 10 feet above the surface of

the water. For both cases, the experimental data consists of 172 pulse returns, where

each pulse return used has a length of 1024 points. The measurements were taken on the

same day with approximately the same sea conditions. Only the results for the first
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UWB radar pulse in the 172 pulse recorded are included in this chapter, however, the

results presented for the first pulse are applicable to all pulses.

C. DESCRIPTION OF THE ALGORITHMS

1. Description of the Time-Frequency Algorithms

For each time-frequency method, a variety of window lengths and step sizes were

used, however, the parameters outlined below provide excellent simultaneous time-

frequency resolution that result in unambiguous discrimination of the test signals. The

STFT algorithm uses a 41 point Chebyshev window with a ten point step size. The WD

algorithm used was derived by Parker [20], and was implemented with a 64 point

rectangular window with a 32 point step size that provides a 50 % overlap between the

sliding windows. The IPS algorithm used was derived by Hagerman [211 and is used

with a rectangular window of length 64 and a step sizes of 8 for the synthetic signals, and

a 128 Hamming window and step sizes of 4 points for the UWB radar signals.

2. Description of the Time-Scale Algorithms

The following parameters for the time-scale parameters were chosen by trial and

error, and provide the best processing gain for the synthetic and UWB data. Note, the

time resolution of the DWT is directly related to the scale a and the frequency resolution

of the wavelet is inversely related with scale. Low scales correspond to high frequency

components and provide good time resolution. High scales correspond to low

frequencies and a comparatively poor time resolution.

The DCWT method is implemented with a 1024 point Morlet window. The a

trous DWT algorithm uses the three point interpolating filter (f=[0.5, 1, 0.5]), a Morlet

window, and is used with one, five and ten voices. For both methods k = xt and a 3 of

0.6 provide the best processing gain for the synthetic data records. To detect the

transients in the UWB records, a decrease in bandwidth of the Morlet window to 03=0.35

was necessary to detect the target for the radar record return signal corresponding to the
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boat without corner reflector. Mallat's DWT algorithm is implemented using a

Daubechies [ 151 12 point orthonormal scaling function h and analyzing wavelet g. Other

combinations of DWT parameters and filter lengths were used, but the listed values

provide the best processing gain.

3. Cross Terms

Recall , the primary disadvantage of the Wigner-Ville Distribution described in

Chapter III was the existence of cross terms that occur midtime and midfrequency

between multicomponent signals. Cross terms also exist for the magnitudes of the

coefficients of the STFT, IPS and the wavelet transform time-frequency/scale

distributions. Cross terms that occur between closely spaced signals can have significant

amplitudes that corrupt the transform spaces of the time-frequency and scale-frequency

distributions. Thus, cross terms can provide a serious limitation in the analysis of

multicomponent signals.

The STFT, IPS and CWT cross terms will occur at the intersection of two

overlapping signals, unlike the WD cross terms which always occur midtime and

midfrequency between two WD autocomponents [10],[ 11]. Thus, for n multicomponent

signals, the STFT, IPS and the CWT can have minimum of zero cross terms (for no

overlapping signals) or, a maximum of (Jcross terms, unlike a total of ()cross terms

for WD. In addition, the cross terms of the STFT can also have a maximum magnitude

equal to twice the product of the magnitude of the spectrograms for each individual

signal.

4. Definition of the Processing Gain Ratio (PGR)

Note that none of the time-frequency or DWT methods described in this thesis

actually reduce the sea-clutter, background noise or radio frequency interference (RFI),

as did the methods listed in Chapter II. Therefore, the results cannot be described in
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terms of an increase in signal-to-noise ratio (SNR). The time-frequency and DWT

techniques provided in Chapters III-IV serve to enhance the distinguishing characteristics

of the desired signal in the presence of undesirable noise. Thus, the results can be

described in terms of a processing gain ratio (PGR). The PGR is computed in decibels

(dB) and is defined as the voltage ratio of the maximum voltage value (V.) in the time-

frequency/time-scale surface divided by the mean voltage value (V,,,,,) of the surface.

Therefore, the PGR is described by the following equation:

(PGR)dB = 20log( V.- J. (81)

In addition the PGR is arbitrarily set equal to zero if Vý occurred at time bin less than

100 or at time bin greater than 1000 due to the potential dominance of the noise at the

beginning (time bin< 100) and the end of the UWB radar data records (time bin>1001).

Consequently, a positive PGR was computed if V,, occurred between time bins 101-

1000. This definition of PGR is not generic and cannot be used for arbitrary targets, but

is considered here because the target can only occur between time bins 101-1000 for the

experimental data used in thesis.

D. COMPARISON OF THE ALGORITHMS

1. Impulse Function

Figures 6-8 are time-frequency distributions for the impulse function s(n)=

6(n - 256) computed by the STFT, WD, and IPS methods. Figures 9-11 are time-scale

representations of the impulse function for the DCWT, a trous DWT and Mallat's DWT

algorithms. The top figure is the contour plot of the magnitude of the two-dimensional

surface and the bottom plot is the corresponding three-dimensional mesh plot.

The impulse function is chosen as a test signal because it demonstrates the ability

of the various methods to localize a signal in time. Each technique localizes the signal at
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bin 256. As expected, the time-frequency representations obtained for the STFT, WD

and IPS are constant for all frequencies at bin 256, while the time-scale surfaces are

cone-shaped in nature. Recall that the scalogram shows a detailed view of the signal in

time at high frequencies (small scales) and the global behavior of the signal with

increasing scale (low frequencies). The cone-shaped behavior of the WT is better

understood by computing the analytic expression of the transform of s(t) using equation

(21a):

CWT(a,n)= - f(r-to -g(t-)dt,

_ __, o-.3

- gI -t -n). (82)

Recall that g(n) is non-zero over a finite interval because the function is admissible.

Thus, as the scaling factor a increases, the interval over which CWT(a,n) is non-zero

increases by a factor of a, resulting in the cone-shaped support of the CWT in the vicinity

of to.

In addition, the time-scale representation of the shifted dirac is used to check the

filter alignment for the filters present in the DWT algorithms, as cautioned by Dutilleux

[16]. The DWT scaling and analyzing filters are aligned properly because the time-scale

representation radiates symmetrically from bin 256 and is not clearly offset in one

direction on either side of bin 256.

2. Complex Sinusoid

Figures 12-14 present the magnitudes of the time-frequency distributions and

Figures 15-18 are the magnitudes of the time-scale expressions obtained for the complex

sinusoid described in equation (77). Note the frequency resolution for the a trous DWT

algorithm (but not Mallat's DWT algorithm) can be increased by the introduction of

multiple voices. The addition of voices serves to decrease the RBW of the Morlet
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analyzing wavelet. In turn, this action increases the length of g(t), and because of the

Heisenberg uncertainty principle, the time resolution of the algorithm is decreased.

Again, the representation of an arbitrary complex sinusoid on the time-scale

surface is better understood by computing the analytical expression of the wavelet

transform of s(t) = e12,'. Using equation (2 1c), the CWT of s(t) is obtained by:

CWTr(a, ) = f S()G (aw)e'-do)

= 21 rJ8(Wo- O))G(aw)e1'"dao

= 2;rG(acoj)eJo. (83)

Therefore, the CWT of a complex sinusoid may be viewed as a modulated version of the

Fourier transform of the analyzing wavelet at the modulating frequency coo. Thus, the

time-scale surface of a complex sinusoid is represented by a frequency band located at

the modulating frequency.

The scalograms corresponding to the DCWT, a trous algorithm (one voice), and

Mallat's algorithm present equivalent frequency resolution, as shown in Figures 15-16

and 18. This frequency resolution may be considered poor when compared to the time-

frequency methods. In each of these cases the resolution is not adjustable and it could be

difficult to resolve two sinusoids of with similar frequencies. As shown in Figure 17(a)

and Figure 17(b), the frequency resolution is adjustable in the a trous algorithm through

the introduction of five and ten voices.

3. Single Linear Chirp

Al! time-frequency and time-scale transforms show good time and frequency

resolution throughout the range of frequencies. This was expected because only one

signal is present and therefore, no cross terms exist for a single linear chirp, as shown in

Figures 19-25. Also, the time-frequency methods have a fixed time-frequency resolution

over all frequencies, which allows good resolution at low frequencies.
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The performance of the DCWT, one voice a trous and Mallat's algorithm are

comparable. However, their performance is inferior when compared to the STFT,

Wigner-Ville and IPS methods for low frequencies (high scales). For five and ten

voices, however, the performance of the a trous method is comparable to the

spectrograms for high frequencies (low scales).

4. Two Crossing Linear Chirps

Time-frequency methods exhibit good time and frequency resolution but suffer

from degraded performance due to the presence of undesirable cross-terms near the

crossing point of the two chirps, as shown in Figures 26-28. For the STFT and IPS

transforms, the cross terms occur on the autoterms of the time-frequency distribution and

are additive at the crossing point of the two chirps [10,[1111. The cross terms of the

Wigner-Ville distribution appear at the mid-point between the autoterms of the two

signals [11] and interfere with the autoterms. In all three cases, the cross terms dominate

the plot at the crossing point of the two chirps. The effect causes problem when

analyzing multicomponent signals with frequency components that are close together.

The cross-terms can be minimized by reducing the size of the window but at the expense

of reducing the frequency resolution.

The performance of the DCWT, the a trous (one voice), Mallat's algorithm are

once again comparable and do not show good frequency resolution. The cross terms

occur on the autoterms [I 1 I and also dominate at the midpoint of the two signals. As

seen from Figures 3 1(a)-(b) the frequency resolution can be improved with the addition

of voices but the cross-terms are still present at the crossing point of the two chirps.

5. Two Crossing Linear Chirps in White Gaussian Noise (WGN)

Figures 33-39 show time-frequency and time-scale distributions for each of the

methods for two crossing linear chirps embedded in white Gaussian noise. The signal-to-

noise ratio (SNR) is 0 dB. The effect of the noise dominates the distribution in each case

masking the spectral nature of the signals. IPS and the multi-voice a trous method did
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the best job suppressing the noise. For five voices, the signal is barely distinguishable

and for ten voices the noise is sufficiently suppressed that the chirps become apparent.

6. UWB Radar Data For The Boat With Corner Reflector

Figure 40(a) presents the raw UWB radar signal return corresponding to the small

boat with a corner reflector. The radar clearly detects the boat at bin 534.

The STFT, the Wigner-Ville distribution and IPS each clearly delineate the target

transient, as shown in Figures 41-43. The frequency step and overlap was varied in the

STFT and Wigner-Ville methods but no appreciable processing gain was achieved.

In Figures 44-47, the three DWT algorithms each display superior time resolution,

however the one voice a trous provided the highest processing gain. Notice in Figure

46(b) that the transient is smoothed as the number of voices increases. This effect

illustrates the tradeoff between time and frequency resolution.

7. UWB Radar Data For The Boat Without Corner Reflector

Figure 40(b) presents the raw UWB radar return signal corresponding to the small

boat without the corner reflector. Figures 48-54 show the performance of each method

applied to this signal. The STFT shown in Figure 48, the Wigner-Ville distribution

shown in Figure 49 and Mallat's algorithm shown in Figure 54 are unable to distinguish

the target in the presence of sea clutter and RFI. IPS is able to differentiate the target

with a 128 point Hamming window and a four point step size. This implementation

achieves a PGR of 0.0 dB, however, the target is visible as the small peak, offset with a

slightly higher frequency than the main band. Although IPS discerns the target, this

method is undesirable because Vboa,is much lower than V,.,,e. Thus, this technique will

result in a very low detection rate.

The DCWT detects the target with a processing gain of 24.59 dB and with

excellent time resolution. The a trous algorithm, shown in Figure 52 provides best joint

time-frequency resolution and the best of processing gain of 40.83 dB and both wavelet

transforms suppressed the noise uniformly. For the DCWT and a trous algorithms a (3
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of 0.35 was used to achieve the high processing gains. The smaller ,,erved to lower the

relative bandwidth of the Morlet window and to provide a better match to the transient.
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Figure 6. STFT time-frequency distribution for an impulse function at bin 256
(41 point Chebyshev window with a 10 point step)
(a) Contour plot
(b) Mesh plot
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Figure 7. Wigner-Ville time-frequency distribution for an impulse at bin 256
(64 point window with a 32 point step)
(a) Contour plot
(b) Mesh plot
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Figure 8. IPS time-frequency distribution for an impulse function at bin 256
(64 point window with an 8 point step)
(a) Contour plot
(b) Mesh plot
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Figure 9. DCWT time-scale distribution for an impulse function at bin 256
(with k=-r and P--0.6)
(a) Contour plot
(b) Mesh plot
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Figure 10. DWT (a trous ) time-scale distribution for an impulse function
at bin 256 (with k=yr and P3=0.6)

(a) Contour plot
(b) Mesh plot
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Figure 11. DWT (Mallat) time-scale distribution for an impulse function at bin 256
(12 point scaling function)
(a) Contour plot
(b) Mesh plot
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Figure 12. STFT time-frequency distribution for a complex sinusoid beginning
at bin 256 (41 point Chebyshev window with a 10 point step)
(a) Contour plot
(b) Mesh plot
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Figure 13. Wigner-Ville time-frequency distribution for a complex sinusoid
beginning at bin 256 (64 point window with a 32 point step)
(a) Contour plot
(b) Mesh plot
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Figure 14. IPS time-frequency distribution for a complex sinusoid beginning
at bin 256 (64 point window with an 8 point step)

(a) Contour plot
(b) Mesh plot
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Figure 15. DCWT time-scale distribution for a complex sinusoid beginning
at bin 256 (with k=yr and 0--0.6)
(a) Contour plot
(b) Mesh plot
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Figure 16. DWT (a trous ) time-scale distribution for a complex sinusoid
beginning at bin 256 (one voice with k=yr and P3=0.6)
(a) Contour plot
(b) Mesh plot
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Figure 17. DWT (a trous ) time-scale distribution for a complex sinusoiJ
beginning at bin 256 (with k=,r and P=0.6)

(a) Contour plot for five voices
(b) Contour plot of ten voices
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Figure 18. DWT (Mallat) time-scale distribution for a complex sinusoid
beginning at bin 256 (12 point scaling function)

(a) Contour plot
(b) Mesh plot
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Figure 19. STFT time-frequency distribution for a linear chirp
(41 point Chebyshev window with a 10 point step)
(P) Contour plot
(b) Mesh plot
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Figure 20. Wigner-Ville time-frequency distribution for a linear chirp
(64 point window with a 32 point step)
(a) Contour plot
(b) Mesh plot
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Figure 21. IPS time-frequency distribution for a linear chirp
(64 point window with an 8 point step)
(a) Contour plot
(b) Mesh plot

63



.2 25

45 .. .

4 t

2 D 4CO 600 80C 'Zo.

(a)

(b)

Figure 22. DCWT time-scale distribution for a linear chirp

(with k=ir and f3--0.6)
(a) Contour plot
(b) Mesh plot
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Figure 23. DWT (a trous ) time-scale distribution for a linear chirp

(one voice with k= ir and 0 =0.6)
(a) Contour plot
(b) Mesh plot
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Figure 24. DWT' (a trous ) time-scale distribution for a linear chirp

(with k=,r and j3=0.6)

(a) Contour plot for five voices
(b) Contour plot for ten voices
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Figure 25. DWT (Mallat) time-scale distribution for a linear chirp
(12 point scaling function)
(a) Contour plot
(b) Mesh plot
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Figure 26. STFT time-frequency distribution for two linear chirps
(41 point Chebyshev window with a 10 point step)
(a) Contour plot
(b) Mesh plot
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Figure 27/. Wigner-Ville time-frequency distribution for two linear chirps
(64, point window with a 32 point step)
(a) Contour plot

(b) Mesh plot
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Figure 28. IPS time-frequency distribution for two linear chirps
(64 point window with an 8 point step)
(a) Contour plot
(b) Mesh plot
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Figure 29. DCWT time-scale distribution for two linear chirps
(with k=ir and P3=0.6)
(a) Contour plot
(b) Mesh plot
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Figure 30. DWT (a trous) time-scale distribution for two linear chirps

(one voice with k=-r and 03=0.6)
(a) Contour plot
(b) Mesh plot
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Figure 31. DWT (a trous) time-scale distribution for two linear chirps
(with k=-r and 03=0.6)
(a) Contour plot for five voices
(b) Contour plot for ten voices
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Figure 32. DWT (Mallat) time-scale distribution for two linear chirps
(12 point scaling function)
(a) Contour plot
(b) Mesh plot
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Figure 33. STFT time-frequency distribution for two linear chirps in noise
(41 point Chebyshev window with a 10 point step)
(a) Contour plot
(b) Mesh plot
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Figure 34. Wigner-Vill.e time-frequency distribution for two linear chirps in noise
(64 point window with a 32 point step)
(a) Contour plot
(b) Mesh plot
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Figure 35. IPS time-frequency distribution for two linear chirps in noise
(64 point window with an 8 point step)
(a) Contour plot
(b) Mesh plot
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Figure 37. DWT (a trous) time-scale distribution for two linear chirps
in noise (one voice)

(a) Contour plot
(b) Mesh plot

79



- 5

2,5-

200 400 600 800 1000

(a)

4

.3.5

3

2.5 -

2

0.5 4.

0 40 800 <a
200 400 600 Soo 1000

(b)

Figure 38. DWT (a trous) time-scale distribution for two linear chirps
in noise

(a) Contour plot for 5 voices
(b) Contour plot for 10 voices
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Figure 39. DWT (Mallat) time-scale distribution for two linear chirps
in noise (12 point scaling function)

(a) Contour plot
(b) Mesh plot
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Figure 40. Raw UWB radar returns
(a) Boat with corner reflector
(b) Boat without corner reflector
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Figure 41. STFT time-frequency distribution for the boat with comer reflector
(41 point Chebyshev window with a 10 point step)
(a) Contour plot
(b) Mesh plot
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Figure 42. Wigner-Ville time-frequency distribution for the boat with comer
reflector (64 point window with a 32 point step)
(a) Contour plot
(b) Mesh plot
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Figure 43. IPS time-frequency distribution for the boat with comer reflector
(128 point window with a 4 point step)
(a) Contour plot
(b) Mesh plot
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Figure 44. DCWT time-scale distribution for the boat with comer reflector
(with k=yr and 01=0.6)
(a) Contour plot
(b) Mesh plot
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Figure 45. DWT (a trous ) time-scale distribution for the boat with corner
reflector (one voice with k= Yr and P 3=0.6)

(a) Contour plot
(b) Mesh plot
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Figure 46. DWT (a trous ) time-scale distribution for the boat with comer
reflector (five voices with k=xr and P--0.6)
(a) Contour plot
(b) Mesh plot
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Figure 47. DWT (Mallat) time-scale distribution for the boat with comer reflector
(12 point scaling function)
(a) Contour plot
(b) Mesh plot
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Figure 48. STFT time-frequency distribution for the boat without comer reflector
(41 point Chebyshev window with a 10 point step)
(a) Contour plot (PGR=0.0 dB)
(b) Mesh plot
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Figure 49. Wigner-Ville time-frequency distribution for the boat without comer
reflector (64 point window with a 32 point step)
(a) Contour plot (PGR--O.O dB)
(b) Mesh plot
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Figure 50. IPS time-frequency distribution for the boat without comer reflector
(128 point window with a 4 point step)
(a) Contour plot (PGR--O.O dB)
(b) Mesh plot
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Figure 5 1. DCWT time-scale distribution for the boat without comner reflector
(with k=7r and P3=0.35)
(a) Contour plot (PGR=24.59 dB)
(b) Mesh plot
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Figure 52. DWT (a trous ) time-scale distribution for the boat without comer
reflector (one voice with k=-r and 3--0.35)

(a) Contour plot (PGR=40.83 dB)
(b) Mesh plot
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Figure 53. DWT (a trous ) time-scale distribution for the boat without comner
reflector (five voices with k= r and P --0.35)

(a) Contour plot (PGR=-O.O dB)
(b) Mesh plot
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VI. RECOMMENDATIONS AND CONCLUSIONS

In this thesis, the performance of time-frequency and time-scale techniques on

synthetic test signals and raw ultra-wideband radar (UWB) data has been examined.

Traditional time-frequency methods such as the Short Time Fourier Transform (STFT),

the Wigner-Ville distribution (WD), the Instantaneous Power Spectrum (IPS), and their

applications to non-stationary signal analysis were presented in Chapter III. Time-scale

methods such as the "Discrete" Continuous Wavelet transform (DCWT), a trous discrete

wavelet transform (DWT) algorithm and, Mallat's DWT algorithm were derived in

Chapter IV.

The STFT is a spectral analysis technique that relies on the Fourier transform to

compute the spectrum of a windowed data segment. The method consists of multiplying

a signal s(t) with a compactly supported window g(r) centered around an arbitrary point.

The magnitude squared Fourier coefficients of the windowed coefficients provide an

indication of the frequency content of a signal in the vicinity of the arbitrary point. The

power spectral density (PSD) of the signal is obtained by sliding the window across the

data record at regular finite intervals, and computing the magnitude squared of the

Fourier coefficients. This process uses a single analysis window that fixes time-

frequency resolution across the time-frequency surface and is well suited for analyzing

signals consisting of a few stationary components with spectral descriptions that evolve

slowly with time.

The Wigner-Ville distribution and IPS are based on the Wiener-Khinchine theorem

which relates the PSD to the autocorrelation function of a band limited, wide sense

stationary random process. The WD uses a time-dependent autocorrelation function and

IPS uses an averaged autocorrelation function. Both methods provide valid estimates of

the PSD but also have a fixed time-frequency resolution across the time-frequency

distribution. As with the STFT, this occurs because the width of the finite analysis
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window does not vary with frequency (i.e., the window maintains a constant absolute

bandwidth in the frequency domain). Therefore, the STFT, WD and IPS methods are

limited in non-stationary applications because abrupt changes in signal behavior cannot

be simultaneously analyzed with long duration windows required for good frequency

resolution, and short duration windows required for good temporal resolution.

For the spectral analysis non-stationary signals, wavelet transforms provide an

attractive alternative to conventional time-frequency methods. This is true because the

absolute bandwidth of the analysis window (i.e., the analyzing wavelet) varies with

frequency. At high frequencies the window shortens, allowing good time resolution, and

at low frequencies the window broadens, offering good frequency resolution. To satisfy

the uncertainty principle, the concept of a variable absolute oandwidth in wavelet

transforms leads to the notion of a fixed relative bandwidth in the analyzing wavelet.

This implies that the time-bandwidth product across the time-frequency surface remains

constant, however the wavelet transform provides good time resolution (i.e., poor

frequency resolution) at high frequencies and good frequency resoluti, n (i.e., poor time

resolution) at low frequencies 1 13].

Each DWT technique discussed in Chapter IV has different properties. The DCWT

is an undecimated, non-orthogonal DWT. The a trous discrete wavelet transform is a

non-orthogonal decimated transform, and Mallat's algorithm is an orthogonal, decimated

version of the DWT. Non-orthogonal wavelets are desirable because the bandwidth of

the analyzing wavelet may be chosen by the user. However, non-orthogonal DWTs are

not invertible because the DWT coefficients computed at each octave are not independent

and contain redundant information from octave to octave. In some applications,

orthogonal wavelets are desirable because the original signal may be reconstructed from

the DWT coefficients. However, the major drawback of orthogonal wavelets is a lack of

a flexible filter design which results in a relative bandwidth fixed at ir/2.

98



The a trous and Mallat's DWT algorithms are multiresolution algorithms that may be

implemented with similar filter bank structures. The feature that distinguishes the a

trous algorithm from Mallat's algorithm is the choice of filters; low pass filters f and h

(also referred to as the scaling functions) and, the high pass filter g (also known as the

analyzing wavelet). For orthogonal wavelet transforms, the analyzing wavelet g is

determined directly from the scaling function h. For non-orthogonal wavelet transforms,

g is independent of the low pass filterf and, must satisfy the analyzing wavelet

properties listed in Chapter IV.

The multiresolution filter bank implementation of the a trous and Mallat's algorithms

are shown in the two step algorithms shown in Figure 4. First, the DWT coefficients are

computed at octave i [2) by convolving the signal s with analyzing wavelet g. Second,

the signal is scaled for the next octave by convolving s with the scaling function (f for the

non-orthogonal version and h for the orthogonal version). This procedure repeats itself

as the scaled version of s is again filtered by the high pass filter, and scaled by the low

pass filter through the range of desired octaves.

A comparison of the performance of the time-frequency and time-scale algorithms for

five test signals and two raw UWB target returns embedded in non-stationary

background interference is provided in Chapter V. The radar returns consist of a small

boat with and without a corner reflector, and each data record consists of 1024 points.

The time-frequency/scale techniques show good time and frequency resolution for the

dirac and complex sinusoid. The scalograms for the DCWT, one voice a trous and

Mallat's algorithm for the single linear chirp show inferior performance when compared

to the time-frequency methods, however, the multiple voice a trous method shows

comparable resolutions at high scales (octaves). The STFT, IPS and multi-voice a trous

techniques show superior performance for the synthetic signal consisting of two crossing

linear chirps. However, only IPS and the multiple voice a trous algorithm are able to

discern the two crossing chirps embedded in 0 dB white Gaussian noise
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The results are described in terms of a processing gain ratio (PGR). The PGR is

computed in decibels (dB) and is defined as the voltage ratio of the maximum voltage

value (V, 1 ) in the time-frequency/time-scale surface divided by the mean voltage value

(V.,.) of the surface. For each UWB radar record, the location of the target was at

approximately time bin 520. Because of the existence of high levels of interfering noise

at time bin greater than 100 and time bin less than 1000, the PGR was arbitrarily set

equal to zero if V.,,occurred in those bins. To resolve this problem, future study should

include developing a detector and detection criteria capable of distinguishing a target

return in time bins 1-1024.

The STFT, WD, IPS and the wavelet transform techniques demonstrate sufficient

joint time-frequency resolution to unambiguously differentiate the raw UWB radar signal

corresponding to the boat with a corner reflector. However, the results indicate that only

IPS, the DCWT and the one voice a trous algorithms may be used to successfully detect

the transient for the data corresponding to the boat without thl" corner reflector.

However, IPS achieves a very low processing gain when compared to the wavelet

transform methods. The wavelet transform performs well for the boat without corner

reflector data because, at high frequencies, the analyzing wavelet contracts to level

where it provides a better match to the transient nature of the target return.
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APPENDIX A. MATLAB SOURCE CODE

The algorithms described in Chapter III and IV were implemeted using MATLAB

software. The routines that gernerated the distributions examined in Chapter V are listed

below.

1. Short Time Fourier Transform

function [spdatamatrixl=stft(dataspacingp);
% Filenarne: stft.m
% Title: Spectrogram using the Short Time Fourier Transform (STFT)
% Date of Last Revision: 04 Dec 92
% Comments: This program computes the STFT with a 41 point
% Chebyshev window with a 10 point sliding window.

% Input Variables:
% data: input data
% spacing: overlap (10)
% p: p- I indicates contour plot
% p=2 indicates mesh plot

% Output Variables:

% datamatrix: The STFT time-frequency surface

% Associated MATLAB Files: pgrTm

% Associated Functions: none
cig
format compact
xt=data(l,:);
a=chebwin(41,30);
recwin=zeros(1,4I)';
recwin(21:4 1)=data(1:2 1);
windowfa.*recwin,
datamatnx(:, 1)-window;
recwin=zeros(1,41)';
recwin(l 1:4 1)=data(1:3 I);
window=a.*recwin;
datamatrix(:,2)=window;
endpointflength(data);
stop=fix(endpoint/spacing)-2;
for index-2:stop;

recwinfdata((index*spacing)- I9:(index*spacing)+2 I)-
window-a.*recwin;
datamatrix(:,(index+ 1))=rwindow;

end
recwinfzeros(1,41)';
recwin( 1:3 l)-data(endpoint-30:endpoint);
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window=a.*recwin;
datamatrix(:,stop+2)=window;
recwin=zeros(l,41 )';
recwin(1:2 l)=data(endpoint-20:endpoint);
window-a.*recwin;
datamatrix(:,stop+3)=window:
size(datamatrix):
spdatamatrix 1 =ffi(datamatrix.64),
spdatamatrix=spdatamatrix 1(1:32.:):
size(spdatamatrix)
%/oCalculate PGR
[MMM, NNNl=size(spdatamatrix 1);
spdatamatrix(l :M~M, I:NNN/2)=spdatamatrix1( 1Q:M 1 :NNN/2);end;
[PGPiiajjj,maxmwt]=pgr(spdatamatrix).
[MMNNI=size(spdatamatrix);
if p-=1,
contour(flipud(abs(spdatamatrix).^2), 10.( 1 :NN)*spacing,( 1 :MM)/2/MM)
title(['PGR=',num2str(PGR),' dB'])
xlabel('time')
ylabel('fraction of sampling frequency')

end
if p==2,

mesh(flipud(abs(spdatamatrix).A2))
end

2. Wigner-Ville Distribution

function P = wvd(data,winlenstep,begintheendp)
% Filename: wvd.m
% Title: The Wigner-Ville Dstribution
% Date of Last Revision: 04 Dec 92
% Comments: This program computes the Wigner-Ville Distribution
% for the input data sequence. Window length and time step size
% are determined by the user but the window length should be a
% power of two. By default the entire data sequence is used but
% user may specify specific intervals within the data by using
% 'begin' and 'end'.

% Input Variables:
1 data: input data
% spacing: overlap (10)
% data: input data sequence
% winlen: window length
% step: time step size
% begin: desired starting point within data
% theend: desired ending point within data
% p: p= 1 indicates contour plot
% p-2 indicates mesh plot

% Output Variables:
% P: The Wigner-Ville time-frequency surface
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% Associated MAiTLAB Files: pgr.m

% Associated Functions: none

cig
jm.nI = size(data);
ifmin> n

data = data.'-.
end
datalen =lengtih(data);
% use user specified starting and ending points if present
start = 1
finish =datalen;
if nargin = 5

if begin > I
start = begin-,

end
if theend < datalen

finish =theend;
end

end
% interpolate data
% data = interplI(data,2*datalen)-;
% datalen = datalen*2;
% initialize data spaces
data = fzeros( I.winlen/2) data zeros(l1.winlen/2)1;
prod = zeros(I~winlenl2 + 1);
corr =zeros(1,winien);
PS = zeros(l,winien);
index = ;
for n = (winlen/2)+start:step:(winlen/2)+flnish

prod =data(n-winlen.12: n). *conj(fliplr(data(n:n+winlen/2)));
corr [prod conj(fliplr(prod(2:winlen/2)))I;
corr(1) -O;
PS(index,:) = f(corr);
index = index + 1;

end
PS---fiplr(PS);,
[PGR,iijjj,maxmnwtj=pgr(PS);
[mmmr,nnnj=size(PS)
if p==l.
contour(abs(PS').A 2,20,( I:minm)*step,(O:nnn-1 )I2lwinlcn);
x~abel(Itime)
ylabel(Traction of sampling frequency')
end
if p==2,
mesh(abs(PS') A2)
end

3. Instantaneous Power Spectrum

function P -ips(data~wintype.winilen~step,pp)
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% Filename: ips.m
% Title: The Instantaneous Power Spectrum
% Date of Last Revision: 04 Dec 92
% Comments: This function computes an Instantaneous Power Spectral (IPS) surface.
% The IPS surface characteristics are determined by the selection of window
% type (wintype), window length (winlen) and the distance that the window
% is moved through the data sequence (step). The mean is then subtracted from
% the IPS surface and is placed sequentially in the P matrix for display
% The P matrix plots only the positive half of the spectral plane.

% Input Variables:
% data: input data
% wintype: '0 Rectangular Window
% '1' Hamming Window
% winlen: The desired width of the window, normally half of the siglen
% step: Time step desired, normally 1' or a multiple of '2'
% p: p = I indicates contour plot
% p = 2 indicates mesh plot

% Output Variables:

% P: The IPS time-frequency surface

% Associated MATLAB Files: pgr.m

% Associated Functions: none
clg
[datarows,datacolumns] = size(data);
if datarows -1

data=data.';
end
siglen = length(data);
if wintype = 0

win - ones(winlen-l, l);
elseifwintype =1
win = hamming(winlen-1);

end
W = [win(winlen/2:-l: 1)1;
x = [zeros(l.winlen) data zeros(l :winlen)J;
p = zeros(siglen/step,winlen);
index = 1;
for n = winlen+ I :step:siglen+winlen-step+l

Xm = [conj((x(n:-I :n-(winlen/2-1)))).' (x(n:n+(winien/2-1))).'];
Xn = [x(n);conj(x(n))j;
product = ((Xm*Xn).*W).';
product = [product 0 conj(product(winlen/2:-l:2))];
p(index.:) = fftshift(real(.5*fft(product)));
index =index+l;

end
p = p(:,winlen/2+1:winlen);
[prow,pcolumn] = size(p);
%Smoothing
p_jemp(l,:) = mean(p(I:3,:));
p temp(2,:) = mean(p(L:4,:)),
ptemp(prow- 1,:) = mean(p(prow-3 :prow,:));
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p-temp(prew,:) = mean(p(prow-2:prow,:));
for m = 3:prow-2

p temp(m,:) = mean(p(m-2:m+2.:));
end
P = fliplr(p temp);
IPGR,iidWi.naxmwtl = pgr(P);
[mni.nnnJ = size(P)
freqindex = [0:pcolumn-lJ;
timeindex = 1I:prowl;
ifpp== 1.
contour(P'.20,timeindex'step.freqindex/2/nnn)
xlabel('time')
ylabel(fraction of sampling frequency')
end
if pp = 2.
mesh(abs(P'))
end
return

4. Wavelet Transforms

A. Wavelet Transform Algorithm Main Body

% Filename: wave.m
% Title: Wavelet Transform Algorithm Main Body
% Date of Last Revision: 04 Dec 92
% Comments: This is the main body MATLAB routine for the
% "Discrete" Continuous Wavelet transform (DCWT), a trous discrete
% wavelet transform (DWT) and Mallat's DWT algorithm.

% Input Variables:
% data: Input data record must be loaded prior to running this program
% IMAX: Length of scale axis (IMAX=5)
% k: Wavelet parameter (k<pi)
% beta: Modulation factor for Morlet window (beta<0.5)
% L: Length of points in Morlet window (L= 101)
% N: Number of points in record (1024)
% ii: Time bin where target appears
% liii: Scale bin where target appears
% ip: Plot signal & wt or wt only

% Output Variables:
% wtt2: magnitude data of scale-time plot

% Associated MATLAB Files: 1.) atrou v.m
% 2.) mallat.m
% 3.) dcwt.m

/oAssociated Functions: 1.) pgr.m

pp-input('pick plot pp = I contour; pp = 2 mesh: ');

cig
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clear xt xtt gl g2 g
ip= 1,
data = input('input data vector: 3)
imax = input('input imax (interpolation only to i = 6): 3)
a = input(pick algorithm a = I DWT atr: a 2 DWT mallat; a 3 CDWT: );
if a - 1,

ifunc = input('3rd/7th order preintegrator f: 3/7:),
ififUnc 3, f= J0.5,1,0.5],end
if ifunc = 7, f- [-I/16,0,9/16,1,9/16,0,-1/161:end:
voices = input('input number of voices:');

end
if a == 3,

k = input('input k (k<pi): );
beta =i nput('input beta (beta<.5): 3;

end
[np.mp] = size(data),
if np> l.data = data'; end
[np,mp]=size(data); N = mp;
in = mean(data);
xt(l,:) = (data(l,:)-m); %/otake mean of signal out
if a 1, [wtt2,beta.k,kkJ = atrou-v(xtimax,fvoices);end
if a = 2, [wtt2] = mallat(xt);end
if a - 3, [wtt.21 = wavefunc(xtkrbeta~imax);end
[PGR.,iia,maxmwtl = pgr(wtt2);
[MMNN] = size(wtt2);
ifpp - 1,
if a = 1, contour(abs(wtt2).A2,10,1 :N,(0:kk-2)/voices);end;
if a = 2, contour(abs(wtt2).A2,10,1:NN,0:MM-l);end;
if a == 3. contour(abs(wtt2).A2,10,1:NN.0:MM-l);end;
title('DWT Scalogram two linear chirps (one voice a trous): PGR=',num2str(PGR),'dB,

beta=',num2str(beta))
xlabel('time')
ylabel('octave')

end
if pp- 2,

mesh(abs(wtt2).^ 2)
end

B. "Discrete" Continuous Wavelet Transform

function wtt=dcwt(data l,k,beta,imax)
% Filename: wavefunc.m
% Title: Wavelet Transform
% Date of Last Revision: 04 Nov 92
% Comments: This program calculates the "Discrete" Continuous
% Wavelet Transform (DCWT).

% Input Variables:
% datal: Input data record must be loaded prior to running this program
% k: Wavelet parameter (k=7.5)
% beta: Regulating Parameter for the Morlet wavelet
% imax: Length of scale axis (imax <=6)
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% Output Variables:

% Att: Magnitude data of scale-time plot

% Associated MATLAB Files: wave.m

% Associated Functions: none

aO 2;
xt datal;
[M,N] = size(xt);
imax = 6;
x = 0:N-1;
xO-x
fs 1;
m mean(xt);
beta2 = beta2;
fxt(l,:) = fft(xt(l,:)-m);
xg = 2*pi*x*fs/N;
for i = 0:imax-I

a = aOA(i);
g(l,:) = (1/beta)*exp( (-0.5/beta2)*(a*xg-k*ones(xg))^2);
tempg(l,:)fxt(l,).
wtx(i+l) = i;
wtt(imax-i,:) = sqrt(a)*iffi( temp);

end
return

C. a trous Discrete Wavelet Transform

function [wtt2,beta,k,kk=atrou_v(xttimax,f,voices);
% Filename: atrou.v.m
% Title: Direct Wavelet Transform Function (a trous)
% Date of Last Revision: 04 Doc 92
% Comments: This function implements the a trous algorithm for the non-orthogonal
% discrete wavelet transform (DWT) with multiple voices and
% non-causal filters.

% Input Variables:
% data: Input data record must be loaded prior to
% running this program.
% IMAX: Length of scale axis (maximum IMAX-6)
% k: Analysis frequency for Morlet window
% (constraints: pi/2,2*pi*beta<=k<fpi-sqrt(2)*beta)
% beta: Constant proportional to the bandwidth of the
% Morlet window (beta=.25)
% (constraint: beta<=k/(2*pi))
% voices: Number of voices in Morlet window
% N: Number of points in record (1024)
% M: Number of pulses

% Output Variables:
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% mwt: An array (ima~x by N) containing the magnitude of

% DWT coefficients.

% Associated MATLAB Files: wave. m

% Associated Functions: I.) gwin -v. m (calculates Mornet window)
% 2.) interpm.m.m (inserts zeros)

j = sqrt(-1);,
[MN1 size(xtt);
if voices > I

beta = piI(4*sqrt(2)*voices);
k = pi-sqrt(2)*beta-.

else
k =input('for voices = I enter k: )

beta = input('for voices = 1 enter beta (beta<O 5):')
end

L = fix(2*sqrt(2)/beta),
wtt =zeros(voices*imaxL+N);

kkl1;
for i= U:max

for vnuxn = O:voices-lI
g =gwinvY(L~k~betaJi,vnum,voices);
clear wttlI wttemp;
L2 = fix(L/2);
wttemp =conv(g,xtt)*;
mt = length(wttemp);
wttl =wttemp(L2+1:mt);

if i < 2
,Witt1 Wttl;

elseif0i> = 2 & i< = 6)
forj =:i-l

wttl = interpm(wttl,2);
end

else
forj =1:6

wttl = interpm(wttl,2);
end

end
wtt(kk,1:Iength(wttl)) -wttl(l:Iength(wttlI));
kk =lk+ 1;

end
LF fix(length(f)/2);
temp - conv(f~xtt);
nt = ength(temp);
clear xtt
tempf = temp(LF4 I: no);
xtt = tempf(2:2:length(tempf))/sqrt(2);

end
wtt2 = wt(:,1 N);
wtt2 = flipud(wtt2);
return
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D. Mallat's Discrete Wavelet Transform

function wtt2=mallat(datal );
% Filename: mallat.m
% Title: Mallat's Discrete Wavelet Transform Algorithm
% Date of Last Revision: 04 Dec 92
% Comments: This function implements Mallat's algorithm for the orthogonal discrete
% wavelet transform (DWT) and non-causal filters.

% Input Variables:
% data L: Input data record must be loaded prior to runnung program

% Output Variables:

% wtt2: An matrix (imax by N) containing the magnitude of the DWT coefficients

% Associated MATLAB Files: wave.m

% Associated Functions: 1.) interpm.m
% 2.) gmallat.m

h = input(Enter number of coefficients (4 or 12): );
j = sqrt(-l);
[M,N] = size(datal);
xt = datal(l,:);
imax = 5;
m = mean(xt);
xtt(I,:) = (xt(l,:).m);

ss = sqrt(3);
if h = 4; h = I/(4*sqrt(2)).*[I+ss,3+ss,3-ssl-ss];end;
if h = 12; h 1.1115,.494,.7511,.3153,-.2263,-. 1298,.0975,.0275,-.0316,.00056,.0048,-.0011 );end:
g = gmallat(h);
L = length(g);
wtt = zeros(imaxN);
fori= L:imax

clear wtt 1 wttemp;
L2 = fix(L12);
wttemp = conv(gxtt);
mt = length(wttemp);
wttl = wttemp(L2+2:2:mt);
wttl = interpm(wttl,2);
size(wttl);

ifi<2
wttl = wttl;

elseif (i >= 2 & i <= 6)
forj = l:i-1

wttl = interpm(wttl,2);
end

else
forj - L:6
wttl = interpm(wttl,2);

end
end
wtt(imax-i+ 1, 1 :length(wtt 1)) wtt 1 (1 length(wtt 1));
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temp = conv(hlxtt);
nt length(temp);
L3 fix(L12);
clear xtt
xtt = temp(L3+2:2:length(temp))/sqrt(2);

end
wtt2 -- tt( 1 :imax. 1 :N).
return

5. Associated Functions Generic to the Main Routines

A. Processing Gain Ratio

function KPG1iibjmaxmwt|=pgr(wtt)
% Filename: pgr.m (UNIX)
% Title: Processing Gain Ratio (PGR) Calculation
% Date of Last Revision: 04 Dec 92
% Comments: This function calculates the Processing Gain Ratio.

% Input Variables:
% wwt: Magnitude data of time-scale plot.

% Output Variables:
% PGR: Processing Gain Ratio (dB)
% ii: Bin where maximum value of mw¶ appears
% jijj: Scale bin where maximum value of mwt appears
% maxmwt: Vector containing max points in time

% Associated MATLAB Files: 1.) wave.m
% 2.) stft.m
% 3.) wvd.m
% 4.) ips.m

% Associated Functions: none

% normalize plot
maxwtt = abs(max(wtt));
[maxmax,iiJ = max(maxwtt);
meanmean = mean(maxwtt);
mwt = abs(wtt/(maxmax));
0/ofind max term vector in mesh plot
maxmwt = max(mwt);
%/ofind mean of max value vector
mearunwt = mean(maxmwt);
tempmwt = maxmwt;
%replace max value with mean value
tempmwt(ii) = meanmwt;
0/ofind mean of revised signal
meantemp - mean(tempmwt);
if (ii<l00) I (ii>1000)

PGR - 0,00;
else
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PGR = 20*log(l/meantemp)
end
0/ofind bin where max scale occurs
xxxx = max(abs(real(fliplr(mwt')))),

1W = find(xxxx>.9).
return

B. Interpolation

function data=interpm(idata)
% Filename: interpm.m
% Title: Orthogonal Analyzing Wavelet
% Date of Last Revision: 04 Dec 92
% Comments: This function puts a zero between every other point
% input array. The output array is twice as long as the input array.

% Input Variables:
% idata: The input data array (of L points)

% Output Variables:
% data: The dilated output array (of 2XL points)

% Associated MATLAB Files: 1.) mallat.m
% 2.) atrouv.m

% Associated Functions: none

L=iength(idata),l= :2:2"L-I;
data=zeros(l.2*L-l);
data(l)=idata,

C. Morlet Wavelet Voices

function [g]=gwin.v(L.k.betami,vnumvoices);
0/ejilename: gwinyv.m
%Title: Morlet Wavelet Voices
0/*Date of Last Revision: 04 Dec 92
%/aComments: This function calculates a multiple-voiced Morlet
% window for discrete wavelet transform (DWT) algorithms.

%/Input Variables:
% L: Number of points in window.
% k: Analyzing frequency for Morlet wavelet.
% beta: Bandwidth of Morlet window
% voices: Number of voices.

"/Output Variables:
% g: An array (of L points) containing the Morlet window
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0/oAssociated MATLAB Files: atrou_v.m

%Associated Functions: none

g (-(L- 1 )/2:(L- 1 )/2)/((2"( I/VoiCCS))Avnum):
gl(I.:-) = e~xp( -0. 5*beta^2 *((X)).^ 2 )

g2(l,:) = exp( O*k).*(x)):
g(l,:) = gl(l,:).*g2(l,:)-,

return

D. Orthogonal Analyzing Wavelet

function g=gmallat(h);
% Filename: gmallat.m
% Tide: Orthogonal Analyzing Wavelet
% Date of Last Revision: 04 Dec 92
% Comments: This function calculates the orthogonal analyzing wavelet g
% from the orthogonal scaling function h.

% Input Variables:
% h: Orthogonal scaling function (Daubechies coefficients)
% L points in length,

% Output Variables:
% g: An array (of L points) containing the orthogonal
% wavelet coefficients.

% Associated MATLAB Files: mallat.m

% Associated Functions: none

L=length(h);
g-zeros( 1 :L);
for i=O:L.I
n=i+l;
g(n)=((-l )An)*h(L-i);
end
return
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